Posttranscriptional regulation of glutamine synthetase in the filamentous Cyanobacterium Anabaena sp. PCC 7120: differential expression between vegetative cells and heterocysts.

نویسندگان

  • Carla V Galmozzi
  • Lorena Saelices
  • Francisco J Florencio
  • M Isabel Muro-Pastor
چکیده

Genes homologous to those implicated in glutamine synthetase (GS) regulation by protein-protein interaction in the cyanobacterium Synechocystis sp. strain PCC 6803 are conserved in several cyanobacterial sequenced genomes. We investigated this GS regulatory mechanism in Anabaena sp. strain PCC 7120. In this strain the system operates with only one GS inactivation factor (inactivation factor 7A [IF7A]), encoded by open reading frame (ORF) asl2329 (gifA). Following addition of ammonium, expression of gifA is derepressed, leading to the synthesis of IF7A, and consequently, GS is inactivated. Upon ammonium removal, the GS activity returns to the initial level and IF7A becomes undetectable. The global nitrogen control protein NtcA binds to the gifA promoter. Constitutive high expression levels of gifA were found in an Anabaena ntcA mutant (CSE2), indicating a repressor role for NtcA. In vitro studies demonstrate that Anabaena GS is not inactivated by Synechocystis IFs (IF7 and IF17), indicating the specificity of the system. We constructed an Anabaena strain expressing a second inactivating factor, containing the amino-terminal part of IF17 from Synechocystis fused to IF7A. GS inactivation in this strain is more effective than that in the wild type (WT) and resembles that observed in Synechocystis. Finally we found differential expression of the IF system between heterocysts and vegetative cells of Anabaena.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of carbon-to-nitrogen ratio in the filamentous and heterocystous cyanobacterium Anabaena sp. PCC 7120 with single-cell soft X-ray imaging

Vegetative cells and heterocysts in the filamentous cyanobacterium Anabaena sp. PCC 7120 were observed by soft X-ray microscopy. Carbon-to-nitrogen (C/N) ratio of each cell was estimated by the difference of the absorbance of the images below and above the nitrogen K-edge absorption. It was revealed that the C/N ratios in vegetative cells and heterocysts are 4.54 and 2.46, respectively.

متن کامل

The NtcA-dependent P1 promoter is utilized for glnA expression in N2-fixing heterocysts of Anabaena sp. strain PCC 7120.

Expression of the glnA gene encoding glutamine synthetase, a key enzyme in nitrogen metabolism, is subject to a variety of regulatory mechanisms in different organisms. In the filamentous, N(2)-fixing cyanobacterium Anabaena sp. strain PCC 7120, glnA is expressed from multiple promoters that generate several transcripts whose abundance is influenced by NtcA, the transcription factor exerting gl...

متن کامل

A Comprehensively Curated Genome-Scale Two-Cell Model for the Heterocystous Cyanobacterium Anabaena sp. PCC 7120.

Anabaena sp. PCC 7120 is a nitrogen-fixing filamentous cyanobacterium. Under nitrogen-limiting conditions, a fraction of the vegetative cells in each filament terminally differentiate to nongrowing heterocysts. Heterocysts are metabolically and structurally specialized to enable O2-sensitive nitrogen fixation. The functionality of the filament, as an association of vegetative cells and heterocy...

متن کامل

Dynamics and Cell-Type Specificity of the DNA Double-Strand Break Repair Protein RecN in the Developmental Cyanobacterium Anabaena sp. Strain PCC 7120

DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In t...

متن کامل

A Comprehensively Curated Genome-Scale Two-Cell Model for the Heterocystous Cyanobacterium Anabaena sp. PCC 71201[CC-BY]

Anabaena sp. PCC 7120 is a nitrogen-fixing filamentous cyanobacterium. Under nitrogen-limiting conditions, a fraction of the vegetative cells in each filament terminally differentiate to nongrowing heterocysts. Heterocysts are metabolically and structurally specialized to enable O2-sensitive nitrogen fixation. The functionality of the filament, as an association of vegetative cells and heterocy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 192 18  شماره 

صفحات  -

تاریخ انتشار 2010